The Ship Operator's Guide To NOx Reduction

The Comprehensive Resource For NOx Emissions Reduction & Abatement

GUIDE SPONSORS

SUPPORTING SPONSOR

The Ship Operator's Guide To NOx Reduction

Expert Contributor: Catherine Austin Editors: Fiona Macdonald & Isabelle Rojon Published by: Fathom Maritime Intelligence Design: Benjamin Watkins

Fathom 27 Sheet Street Windsor UK SL4 1BN

info@fathom-mi.com

First published in 2015 by Fathom Maritime Intelligence. Copyright 2015 Fathom Eco-Efficiency Consultants Ltd.

All rights reserved. No part of this publication may be reproduced or stored or transmitted by any means or in any form, electronically or mechanically, including photocopying, recording, or any information storage and retrieval system, without permission which should be sought from publishers.

ISBN: 978-0-9932678-8-8

Images: Every effort has been made to trace and contact the copyright holders of the images reproduced in this book. However, the publishers would be pleased, if informed, to correct any errors or omissions in subsequent editions of this publication.

	Abbreviations	V
1	The Regulation Of NOx Emissions From Ships	1
<mark>ا</mark> 1.1	MARPOL Annex VI	2
1.1.1	Regulatory Control	4
1.2	What Are Nitrogen Oxides?	4
1.2.1	Understanding Ship NOx Emissions	4
1.3	Why Are Ship NOx Emissions Regulated?	5
1.3.1	Impacts On Human Health	5
1.3.2	Impacts On The Environment	6
1.4	How Are Ship NOx Emissions Regulated?	6
1.4.1	What Does Regulation 13 Enforce?	6
1.4.2	Who Does Regulation 13 Apply To?	7
1.4.2.1	Major Conversions Post-January 1, 2000	8
1.4.2.2	Pre-2000 Engines	8
1.4.2.2.1	Approved Methods	9
1.5	The NOx Technical Code Explained	9
1.5.1	What Is The NOx Technical Code?	9
1.5.2	What Does The NOx Technical Code Apply To?	10
1.5.3	Survey And Certification Requirements	10
1.5.3.1	Engine International Air Pollution Prevention Certificate	11
1.5.3.2	Technical File And Record Book Of Engine Parameters	11
1.5.4	In-Service Engine Emission Testing	11
1.5.5	NOx Reducing Devices	12
1.6	NOx Emission Control Areas	13
1.6.1	Where Have NOx ECAs Already Been Established?	13
1.6.2	How Are NOx ECAs Designated?	14
1.7	Regional NOx Regulations	15
1.7.1	The Norwegian NOx Tax	15
	Chapter One References	15

2	Achieving Tier II Compliance:	17
	Technologies & Solutions	
2.1	Internal Engine Modifications	18
2.1.1	Miller Cycle In Four-Stroke Engines	18
2.1.2	Two-Stage Turbocharging	19
2.1.3	Slide Valves	20
2.1.4	Fuel Injection	22
2.1.4.1	Injection Pressure	22
2.1.4.2	Injection Rate Shaping	22
2.1.4.3	Variable Injection Timing	23
2.2	Direct Water Injection	24
2.3	Humid Air Motor	24
2.4	Water-In-Fuel Emulsion	26
	Chapter Two References	28
3	Achieving Tier III Compliance: Technologies & Solutions	29
3.1	Selective Catalytic Reduction	30
3.2	Exhaust Gas Recirculation	31
3.2.1	System Configuration	34
3.2.1.1	Bypass Matching	34
3.2.1.2	Turbocharger Cut-Out	35
3.3	Liquefied Natural Gas	36
3.3.1	Advantages Of LNG As A Fuel Option	36
3.3.2	Disadvantages Of LNG As A Fuel Option	36
3.3.3	The Cost Of LNG As A Fuel Option	37
3.3.4	Market Uptake	37
	ChapterThree References	38

4.1	An In-Depth Guide To Selective Catalytic Reduction Practical Considerations	41
4.1.1	System Components	41
4.1.2	The Reducing Agent	41
4.1.2.1	Aqueous Urea Solution	42
4.1.2.2	Urea Prill	44
4.1.2.3	Aqueous Ammonia	44
4.1.2.4	Anhydrous Ammonia	44
4.1.2.5	Optimal NOx Conversion Efficiency	44
.1.2.5.1	Reducing Agent Injection Rate	44
1.1.2.5.2	Reducing Agent Quantity	45
1.1.2.5.3	Reducing Agent Droplet Size	45
4.1.2.6	Reducing Agent Storage	45
.1.2.6.1	Storage Of Urea Solution	45
.1.2.6.2	Storage Of Urea Prill	46
1.1.2.6.3	Storage Of Aqueous Ammonia	46
.1.2.6.4	Storage Of Anhydrous Ammonia	46
4.1.2.7	Reducing Agent Availability	47
4.1.2.8	Ammonia Slip	47
.1.2.8.1	Decreasing Ammonia Slip	48
4.1.3	The Catalyst	48
4.1.3.1	Common Marine SCR Catalysts	48
4.1.3.2	Catalyst Lifetime And Deactivation	48
.1.3.2.1	Temperature	50
.1.3.2.2	Fuel And Oil Spills	50
.1.3.2.3	Chemical Attack	50
1.1.3.2.4	Quality Of Fuel	50
4.1.3.3	Catalyst Maintenance And Replacement	52
4.1.3.4	Catalyst Availability And Disposal	52
4.1.4	Engine Load	52
4.1.5	The SCR Control System	53
4.1.6	Exhaust Backpressure	53
4.1.7	Bypass	54
4.1.8	Applicability To Two- And Four- Stroke Engines	55
4.1.9	Size, Location And Weight Of The SCR And Components	55
4.1.9.1	Weight Considerations	56
4.1.9.2	Integration Of The Silencer	58
4.1.10	SCR System Maintenance	58
4.1.11	Compatibility With Exhaust Gas Cleaning Systems	59

4.2.1	SCR System Regulations, Guidelines & Enforcement	60
4.Z.1	Certification Procedure	60
4.2.1.1	Scheme A	60
4.2.1.2	Scheme B	60
4.2.1.3	Simplified Measurement Method	61
4.2.2	Technical File	61
4.2.3	Measures To Minimise Reductant Slip	62
4.3	Cost Insight	63
4.3.1	Examining Capital Expenditure	63
4.3.1.1	System Purchase Cost	63
4.3.1.2	System Installation Cost	63
4.3.2	Examining Operational Expenditure	64
4.3.2.1	Reducing Agent Consumption	64
4.3.2.2	SCR System Maintenance	66
1.3.2.2.1	Routine Cleaning	66
1.3.2.2.2	Replacing Catalyst Elements	66
4.3.2.3	Fuel Consumption	67
4.3.3	Financial Saving Potential	70
4.3.3.1	Swedish Environmental Differentiated Fairway Dues System	70
4.3.3.2	Norwegian NOx Fund	71
4.3.3.3	Environmental Ship Index	71
4.3.3.4	Green Award	72
4.4	Market Uptake Analysis	73
	Chapter Four References	75

CHAPTER FIVE

SCR Systems & Providers

COMPANY	PAGE NUMBER
Wärtsilä	80
Ecospray Technologies	82
AeriNox	83
Dansk Teknologi	85
ECOUREA	86
AirLife	87
Hug Engineering	88
Panasia	89
Tenneco	90
Mitsubishi Heavy Industries Marine Machinery & Engine	91
Agriemach Ltd	92
DEC Marine AB	93
MAN PrimeServ	94
Hug Engineering	95
Kwang Sung	96
Caterpillar	97
Engine, Fuel And Emissions Engineering, INC. (EF&EE)	98
Hitachi Zosen	99
Hyundai Heavy Industries	100
Johnson Matthey	101
Ecospec	102
Cormetech	103
ĽOrange	104
MIRATECH	104
Yara	105
MTU	105

Wärtsilä NOx Bodugor (NO

Wärtsilä NOx Reducer (NOR)

The Wärtsilä NOx Reducer (NOR) SCR system reduces the level of NOx in the exhaust gas from the engine by means of catalyst elements and a reducing agent. The system is intended for four-stroke diesel engines, operating on both LFO and HFO fuels. Tailor-made NOx Reducers can be designed upon request, e.g. for NOx reduction levels other than IMO Tier III or for meeting specific space requirements.

Overview		
Ship Types	All	
Newbuild/Retrofit	Both	
Engine Types	Four-stroke medium-speed engines, optimised for Wärtsilä four-stroke engine portfolio. NOR can be also offered to other engine brands	
Fuel Types	MGO, MDO, HFO	

Performance		
NOx Removal	80-90%, other NOx reduction levels upon request	
Removal Of Other Pollutants	SCR systems typically have small or moderate hydrocarbons and soot reduction capabilities.	
Silencing Function	Typical noise reduction for the NOR reactor: 8-10 dB(A). Possibility to integrate NOR reactor with silencers when 35 dB(A) noise reduction is achieved.	

.....

System Components & Installation		
System Components & Installation		
System Components	The main components that are included in the standard scope of supply are: Reactor housing Catalyst elements Soot blowing unit Urea injection and mixing unit Urea dosing unit Control and automation unit Urea pump unit Air unit	 The standard scope of supply may also be extended with the following: NOx monitoring system Mixing duct Compressor station (compressed air for urea injection and soot blowing system)
C		ons are possible, e.g. integrating the SCR and compact silencer systems, a heater for
Bypass Requirement	The NOR reactor can be run dry (soot blowing remains in operation), thus no bypass is required, although classification societies may have their generic bypass requirements for SCRs. Soot blowing ensures efficient cleaning of the whole element surface area.	
Footprint	 Typical dimensions for a two catalyst layer reactor (LFO/MDF): 5MW engine: 3.2 x 2.1 x 2.0m 10MW engine: 3.5 x 2.8 x 2.8m 20MW engine: 4.1 x 3.9 x 3.7m 	
Installation Considerations	One NOR reactor is installed per engine and exhaust gas pipe. The standard reactor is designed in a flexible way for the initial loading of two or three catalyst layers depending on the ship structure. It can be installed either vertically or horizontally onboard the ship.	

Practical Considerations		
Temperature Range	~300-450 °C	
Power Requirements	~1 kW per NOR unit	
Type Of Reducing Agent	Aqueous urea solution (40% recommended, 32% possible)	
Consumption Of Reducing Agent	${\sim}15$ litres/MWh, at full engine load, from Tier II to Tier III level, can be optimised in certain circumstances. The consumption follows the used engine power.	
Tank Capacity For Reducing Agent	Should depend on operating profile in NOx ECAs.	
Ammonia Slip	<10 ppm	
Operational Considerations	Wärtsilä NOR operation mode is automatically controlled and based on common automation platform with Wärtsilä engines. In case requested, the urea injection can be additionally started and stopped based on the Global Positioning System (GPS) signal from the ship system which tells when the ship is operating inside the NOX ECA. Warming up period depends on the operation load (exhaust gas temperature) and reactor size to reach sufficient exhaust gas temperatures for urea injection start and deNOx reactions.	
Emissions Monitoring	A NOx analyser is an optional device and provides NOx emission measurement after the SCR reactor. The analyser can be stationary or alternatively portable for spot check measurements.	
Catalyst Lifetime	Typically 4-6 years	
Maintenance Requirements	 Typical maintenance intervals: Every six months, the urea pumps should be overhauled, the urea filters should be inspected and the urea injector lance and nozzle should be cleaned and inspected. Every year, the reactor and catalyst should be cleaned and inspected, the piping and flexible hoses should be inspected and the gauges, transmitters, switches and other instrumentation should be inspected and tested. Every two years or 5,000 running hours, the urea pump drives should be lubricated. As required, the dosing unit, including the pipe connections and cables, should be inspected and tested. 	
Compatibility With Exhaust Gas Cleaning Systems	The Wärtsilä NOR can be operated together with other exhaust gas treatment units, such as SOx scrubber systems.	

Costs

Operational Costs	€3-6/MWh	
System Maturity		
Class Society Approval	Wärtsilä NOR has been delivered to projects under several class societies (as typical examples DNV, GL, ABS, LR, BV, NK).	
Technological Maturity	Wärtsilä deliveries include over 700 SCR systems.	

As an engine manufacturer, Wärtsilä knows engine behaviour and performance in various operating conditions and thus can optimise SCR units to be effective and reliable for long-term use. Pre-certified engine and SCR packages offered by the company can cut customers' costs.